Calculate the mass deficit in this nuclear reaction

$12{\rm C}+\frac{12}{6}{\rm C}\rightarrow \frac{24}{12}{\rm Mg}$

Information given:

- rest mass of a carbon-12 nucleus: $1.9921157\times 10^{-26}\,{\rm kg}$

- rest mass of a magnesium nucleus: $3.9817469\times 10^{-26}\,{\rm kg}$

- rest mass of a proton: $1.67353\times 10^{-27}\,{\rm kg}$

- rest mass of a neutron: $1.67492\times 10^{-27}\,{\rm kg}$

- speed of light: $3.00\times 10^{8}\,{\rm m}\,{\rm s}^{-1}$

My attempts so far haven't been great I'm thinking along the line of using a formula but even then I don't know what variables to plug in where.

thanks

$12{\rm C}+\frac{12}{6}{\rm C}\rightarrow \frac{24}{12}{\rm Mg}$

Information given:

- rest mass of a carbon-12 nucleus: $1.9921157\times 10^{-26}\,{\rm kg}$

- rest mass of a magnesium nucleus: $3.9817469\times 10^{-26}\,{\rm kg}$

- rest mass of a proton: $1.67353\times 10^{-27}\,{\rm kg}$

- rest mass of a neutron: $1.67492\times 10^{-27}\,{\rm kg}$

- speed of light: $3.00\times 10^{8}\,{\rm m}\,{\rm s}^{-1}$

My attempts so far haven't been great I'm thinking along the line of using a formula but even then I don't know what variables to plug in where.

thanks

Last edited: