Special and General Relativity Special and General Relativity Physics Help Forum 
Mar 8th 2016, 11:14 AM

#1  Junior Member
Join Date: Oct 2015
Posts: 3
 Acceleration in Special Relativity
Hi I'm working on how to resolve the twin paradox in special relativity for my 4thyear dissertation. I've found several different equations which supposedly allow for the calculation of the time experienced by each twin at set distance intervals from Earth, but they don't seem to work during the decelerations.
The travelling twin's flight consists of 4 stages; acceleration towards a distant planet for 3 lightyears, deceleration towards the planet for 3 lightyears, acceleration back to Earth for 3 lightyears, and finally, decelerating towards Earth for 3 lightyears. The absolute acceleration experienced by the travelling twin is 1 ly/yr^2 (approximately 1g).
The equations are as follows;
t = (c/a) sinh(aT/c) = sqrt[(d/c)2 + 2d/a] (time experienced by stationary twin),
d = (c2/a) [cosh(aT/c) − 1] = (c2/a) (sqrt[1 + (at/c)2] − 1) (distance travelled),
v = c tanh(aT/c) = at / sqrt[1 + (at/c)2] (velocity),
T = (c/a) asinh(at/c) = (c/a) acosh[ad/c2 + 1] (time experienced by travelling twin),
γ = cosh(aT/c) = sqrt[1 + (at/c)2] = ad/c2 + 1 (Lorentz factor).
Specifically, I'm interested in the 't' and 'T' equations. They seem to work fine for the 1st phase (acceleration towards the distant planet), but break during the 2nd phase (deceleration towards the distant planet).
I'm unsure as to whether I should plug in distance travelled or displacement from Earth for 'd', and when 'a' becomes negative (during stages 2 and 3), the acosh functions don't seem to work. Does anyone have any ideas? Any help would be appreciated!

 
Mar 8th 2016, 12:39 PM

#2  Forum Admin
Join Date: Apr 2008 Location: On the dance floor, baby!
Posts: 2,152

Originally Posted by Astro Hi I'm working on how to resolve the twin paradox in special relativity for my 4thyear dissertation. I've found several different equations which supposedly allow for the calculation of the time experienced by each twin at set distance intervals from Earth, but they don't seem to work during the decelerations.
The travelling twin's flight consists of 4 stages; acceleration towards a distant planet for 3 lightyears, deceleration towards the planet for 3 lightyears, acceleration back to Earth for 3 lightyears, and finally, decelerating towards Earth for 3 lightyears. The absolute acceleration experienced by the travelling twin is 1 ly/yr^2 (approximately 1g).
The equations are as follows;
t = (c/a) sinh(aT/c) = sqrt[(d/c)2 + 2d/a] (time experienced by stationary twin),
d = (c2/a) [cosh(aT/c) − 1] = (c2/a) (sqrt[1 + (at/c)2] − 1) (distance travelled),
v = c tanh(aT/c) = at / sqrt[1 + (at/c)2] (velocity),
T = (c/a) asinh(at/c) = (c/a) acosh[ad/c2 + 1] (time experienced by travelling twin),
γ = cosh(aT/c) = sqrt[1 + (at/c)2] = ad/c2 + 1 (Lorentz factor).
Specifically, I'm interested in the 't' and 'T' equations. They seem to work fine for the 1st phase (acceleration towards the distant planet), but break during the 2nd phase (deceleration towards the distant planet).
I'm unsure as to whether I should plug in distance travelled or displacement from Earth for 'd', and when 'a' becomes negative (during stages 2 and 3), the acosh functions don't seem to work. Does anyone have any ideas? Any help would be appreciated! 
Special Relativity normally does not work with accelerations; accelerations imply a force and forces belong to General Relativity. If you don't mind my asking, where did you get/derive the equations from?
Dan
__________________
Do not meddle in the affairs of dragons for you are crunchy and taste good with ketchup.
See the forum rules here.

 
Mar 8th 2016, 01:17 PM

#3  Junior Member
Join Date: Oct 2015
Posts: 3

Originally Posted by topsquark Special Relativity normally does not work with accelerations; accelerations imply a force and forces belong to General Relativity. If you don't mind my asking, where did you get/derive the equations from?
Dan 
From what I understand, Special Relativity can work with acceleration, provided that the phases in which acceleration occurs are split up into several instantaneous reference frames. General Relativity can be used to explain the acceleration phases in the proposed scenario, but is not necessary.
I was unsure of where to even start to derive the equations required for my research, but I found the equations here; http://math.ucr.edu/home/baez/physic...et/rocket.html
I've also found some of these equations (particularly 'v' and 'd' equations) elsewhere.

 
Mar 8th 2016, 02:14 PM

#4  Forum Admin
Join Date: Apr 2008 Location: On the dance floor, baby!
Posts: 2,152

Thanks for that!
Without seeing the text I can only speculate, but the idea of instantaneous reference frames is a concept from General Relativity. (Or from Differential Geometry, upon which GR is based Mathematically.) So the text is actually doing GR rather than SR...something they apparently didn't tell you.
Also, what the link you sent me claims is the "Equivalence Principle" is not what Einstein called the Equivalence Principle. But it's a good enough name for what is being described anyway.
Thanks again for the link.
Dan
__________________
Do not meddle in the affairs of dragons for you are crunchy and taste good with ketchup.
See the forum rules here.

 
Mar 9th 2016, 08:10 AM

#5  Member
Join Date: Dec 2012 Location: Boulder, Colorado
Posts: 63
 The simplist way to do it is with the CADO equation, described here: https://sites.google.com/site/cadoeq...eferenceframe
and here:
"Accelerated Observers in Special Relativity", PHYSICS ESSAYS, December 1999, p629.
__________________
Mike Fontenot

 
Mar 9th 2016, 11:44 AM

#6  Forum Admin
Join Date: Apr 2008 Location: On the dance floor, baby!
Posts: 2,152

Originally Posted by MikeFontenot 
Thanks for the page. I'll look at it later. Why are you posting so small? Is there an intruder creeping around your home and you're trying to make sure not to be heard?
Dan
__________________
Do not meddle in the affairs of dragons for you are crunchy and taste good with ketchup.
See the forum rules here.

 
Mar 9th 2016, 01:20 PM

#7  Member
Join Date: Dec 2012 Location: Boulder, Colorado
Posts: 63

Originally Posted by topsquark Why are you posting so small?  When the compose window came up, and I copy/pasted in those two links, they printed extremely large, so I reduced them to something sized about like your sentence above. And when I posted that, it printed on the forum (as displayed on my mac) in a reasonablesized font. I don't understand why it was so small on your display.
__________________
Mike Fontenot

 
Mar 12th 2016, 12:39 PM

#8  Senior Member
Join Date: Nov 2013 Location: New Zealand
Posts: 519

Originally Posted by MikeFontenot 
Oh, the CADO equations, I remember them well. Well almost. This is the thread that on CADO I remember from time ago. Some confusion about CADO Equations
As I recall, this only works for flat Minkowski space. Is that correct?
I am thinking I might take lessons learned from this and put on my physics website.

 
Mar 12th 2016, 04:51 PM

#9  Member
Join Date: Dec 2012 Location: Boulder, Colorado
Posts: 63

Originally Posted by kiwiheretic As I recall, this only works for flat Minkowski space. Is that correct? 
It works wherever and whenever special relativity works ... no significant masses involved.
__________________
Mike Fontenot

 
Dec 29th 2016, 03:12 AM

#10  Junior Member
Join Date: Dec 2016
Posts: 1

General Relativity, all observers agree on the value of acceleration. Get Professional Dissertation Help in UK.

  Search tags for this page 
Click on a term to search for related topics.
 Thread Tools   Display Modes  Linear Mode  