Go Back   Physics Help Forum > College/University Physics Help > Quantum Physics

Quantum Physics Quantum Physics Help Forum

Like Tree13Likes
Reply
 
LinkBack Thread Tools Display Modes
Old Nov 2nd 2018, 10:15 AM   #11
Junior Member
 
Join Date: Oct 2010
Posts: 28
Ok, thanks.

Do you maybe know in an example of a particle in a box, https://www.conservapedia.com/Schrodinger_equation how do we get to this:

The continuous constraint is only satisfied when $\displaystyle \omega a = n \pi$ where $\displaystyle n$ is an integer.
It's a statement at the end of the page.
Nforce is offline   Reply With Quote
Old Nov 2nd 2018, 10:59 AM   #12
Forum Admin
 
topsquark's Avatar
 
Join Date: Apr 2008
Location: On the dance floor, baby!
Posts: 2,464
Originally Posted by Nforce View Post
Ok, thanks.

Do you maybe know in an example of a particle in a box, https://www.conservapedia.com/Schrodinger_equation how do we get to this:



It's a statement at the end of the page.
A wavefunction is (almost) always a continuous function, at least when the potential energy is given by a continuous function. The result $\displaystyle \omega a = n \pi$ comes from substitution of the trig function solution at the endpoints of the box. ( $\displaystyle \psi (x) = 0$ at x = 0 and x = a.)

As to the form of the momentum operator I don't know who came up with it, but there is something called Ehrefest's theorem that gives a link to Classical mechanics. The pertinent equation here is $\displaystyle m \dfrac{d}{dt} < x > = <p>$ where $\displaystyle < A > = \dfrac{d}{dt} \int \psi ^* A \psi ~ dx$ for an operator A. The momentum operator can be inferred from this equation.

-Dan
Nforce likes this.
__________________
Do not meddle in the affairs of dragons for you are crunchy and taste good with ketchup.

See the forum rules here.
topsquark is online now   Reply With Quote
Old Nov 2nd 2018, 11:25 AM   #13
Senior Member
 
Join Date: Oct 2017
Location: Glasgow
Posts: 249
The boundary conditions are set to be

$\displaystyle \psi(0) = 0$
$\displaystyle \psi(a) = 0$

Therefore, following substitution for $\displaystyle \psi$, you get

$\displaystyle A=0$

and

$\displaystyle B\sin \omega a = 0$

You could just set B = 0 as well, but that doesn't yield a very interesting solution. That just states that when the wave function is 0, you satisfy the potentials. Therefore, the more interesting solution is when you look at the fluctuating sine wave and compare the results with 0. It turns out that the LHS is equal to 0 when

$\displaystyle \omega a = \pi n$

where n is any integer. If the above is true, B can be anything and it will still be valid.

You can verify relationship by picking an integer (say, n=2) and then plot the sine wave. You'll see that no matter what you choose, the curve will drops down to x=0 at the boundary. The only exception is if you pick n=0 solution, which gives the same result as the B=0 solution.

Another constraint is required to pin down what B is. In this case, it is found using normalisation (since the area under the probability density function, which is the square of the wave function, must be 1). The relationship $\displaystyle \omega a = \pi n$ is useful when characterising the energy, E, which must have certain discrete values. This is the key feature of quantum mechanics; a lot of the solutions to problems are discrete (i.e. have an integer "n" in it somewhere)
topsquark and Nforce like this.
benit13 is offline   Reply With Quote
Reply

  Physics Help Forum > College/University Physics Help > Quantum Physics

Tags
equation, schroedinger



Thread Tools
Display Modes


Similar Physics Forum Discussions
Thread Thread Starter Forum Replies Last Post
Binetīs equation VonDamian General Physics 0 Jan 18th 2017 12:40 PM
equations in derivation of Roothaan's method computational schroedinger Torgny Quantum Physics 1 Apr 4th 2016 04:39 AM
continuity equation.. alexandros87 Thermodynamics and Fluid Mechanics 10 Nov 22nd 2015 04:56 PM
Heat equation pinkprincess08 Thermodynamics and Fluid Mechanics 2 Feb 19th 2014 01:15 PM
equation petdem Thermodynamics and Fluid Mechanics 8 Feb 15th 2010 06:51 AM


Facebook Twitter Google+ RSS Feed