Physics Help Forum Block Spring System
 User Name Remember Me? Password

 Kinematics and Dynamics Kinematics and Dynamics Physics Help Forum

 Mar 7th 2019, 03:03 AM #1 Member   Join Date: Apr 2017 Location: Turkey Posts: 46 Block Spring System Please any help to solve this problem Thanks in advance Attached Thumbnails
 Mar 7th 2019, 01:37 PM #2 Senior Member   Join Date: Aug 2010 Posts: 403 It's hard to know what in the world you meant in posting this! Surely you don't just want someone to do the problem for you since you say "help". But you show no attempt of your own to solve it so we have no way of knowing what you do know about the problem or what kind of "help" you need. We don't know your level of education- college, secondary school, elementary (unlikely I admit!). Have you studied algebra? Calculus? Differential Equations? How much physics have you studied? I presume that you know that "force= mass x acceleration" and that the force due to a spring is "kx" where k is the "spring constant" and x is the stretch of the spring. We are told that the spring constant is 19.6 N/m. The object's mass is 1.5 kg and the applied force is 20 N so the net force is that minus the "pull back" from the spring: $20- 19.6x= 1.5\frac{d^2x}{dt^2}$. Do you know how to solve that "second order linear differential equation with constant coefficients"? topsquark likes this.
 Mar 8th 2019, 06:20 AM #3 Member   Join Date: Apr 2017 Location: Turkey Posts: 46 Dear HallsofIvy This question is very clear and it is found in page 415 no.21 of [ Physics for Scientists and Engineers , 5th ED ] book . My age is 44 years old and i have graduated from the university since more than 20 years ago . I have a B.sc degree in Electrical Engineering and Diploma degree in Electronics and Diploma in Mathematics. I know very well what is the meaning of Algebra , Calculus , Differential equations and Physics . I know very well how to solve Differential equations 1st order , 1st degree DE , separable Exact DE Linear DE singular solution - Extraneous Loci DE 1st order higher degree DE linear DE with order n Homogeneous Linear Equations with constant Coefficients Linear Equations with variables Coefficients Systems of simultaneous equations Total DE Partial DE Also i know how solve all these types Numerically by hand and by Using MATLAB Also i know how to solve some DE types by using Laplace transform with particular initial conditions I have studied Static , Dynamic , strength of materials and thermodynamics in the 1st and 2nd year in the university , so i know very well what is the meaning of Newton's 2nd Law . I have solved this question by using two hypothesis and i got different results so i posted this question here trying to find someone explains to me this contradiction in these two different results , this what i meant '' help'' . Any way i have attached these two methods for solutions here and i will be very happy to find some one tell me which solution is correct . By the way in your solution you are used Fs = Kx , but in fact it is Fs = -Kx , you are neglected the negative sign i do not know why , this negative sign guided me to the 2nd solution. Best regards Attached Thumbnails
Mar 8th 2019, 09:20 AM   #4
Forum Admin

Join Date: Apr 2008
Location: On the dance floor, baby!
Posts: 2,611
 Originally Posted by Razi Please any help to solve this problem Thanks in advance
Our usual approach in helping a student is to find out what the student may have done wrong or misunderstood something. Without showing your work or discussing it we don't know where to focus. HallsofIvy is simply quoting policy, which is pretty much the only way we can focus our attention on what the problem is.

Typically when I do a spring problem I don't worry so much about the negative sign. That makes writing the equations a bit more simple. Just remember that when the spring is extended the spring force is in the direction opposite the extension. (In this case that means we must use the "-" in the spring force. If the spring is compressed, then we use the "+" sign. Of course, this is for a choice of positive direction in the direction that the spring extends.) It's rather like how we choose the direction of the friction in the second part of the problem. The friction force is always acting opposite the direction of the velocity.

So anyway, the equation of motion of our object is
$\displaystyle \dfrac{d^2x}{dt^2} = - \dfrac{k}{m}x + \dfrac{20}{m}$
This is the equation from your first attempt.

Your solution method is a bit of overkill. Usually for spring motion we expect some kind of oscillatory motion so it's simpler to just start with the trig functions. So your homogenous solution and particular solution become
$\displaystyle x_h(t) = A~cos( \omega t) + B~sin( \omega t)$

$\displaystyle x_p(t) = C$
where $\displaystyle \omega = \sqrt{ \dfrac{k}{m} }$

Using x(0) = 0 and x'(0) = 0 I get
$\displaystyle x(t) = \dfrac{20}{k} \left ( cos( \omega t) - 1 \right )$
just as you got.

I didn't check the rest. If you need further help just let us know.

-Dan
__________________
Do not meddle in the affairs of dragons for you are crunchy and taste good with ketchup.

See the forum rules here.

Last edited by topsquark; Mar 8th 2019 at 09:22 AM.

 Mar 9th 2019, 08:41 AM #5 Member   Join Date: Apr 2017 Location: Turkey Posts: 46 Dear Dan Thank you so much for your clarification and for your explaining , i do appreciate that . Now , i knew that my 1st solution was correct . Best regards Razi

 Tags block, spring, system

 Thread Tools Display Modes Linear Mode

 Similar Physics Forum Discussions Thread Thread Starter Forum Replies Last Post SMA777 Energy and Work 0 Oct 15th 2011 05:49 PM fireemblem13 Kinematics and Dynamics 1 Dec 30th 2009 07:23 PM Black Kinematics and Dynamics 1 Dec 15th 2009 10:05 PM Black Kinematics and Dynamics 1 Dec 15th 2009 04:04 AM rjsci13 Kinematics and Dynamics 3 Nov 2nd 2009 06:39 AM