Go Back   Physics Help Forum > College/University Physics Help > Atomic and Solid State Physics

Atomic and Solid State Physics Atomic and Solid State Physics Help Forum

Reply
 
LinkBack Thread Tools Display Modes
Old Apr 12th 2015, 11:46 AM   #1
Junior Member
 
Join Date: Dec 2014
Posts: 2
The tight-binding hamiltonian for a two-dimensional vanadium dioxide

Code:


In his book, Quantum Field Theory for the Gifted Amateur, author  Stephen Blundell explains that in the tight-binding model, one considers  a lattice of fixed atoms with electrons moving between them (as shown in Fig. 4.6  above). These electrons can lower their kinetic energies by hopping from  lattice site to lattice site. To deal with the discrete lattice in the  model, we need to work in a basis where the fermion creation operator  $\hat{c}_i^\dagger$ creates a particle at a particular lattice site  labelled by $i$. The kinetic energy saving for a particle to hop between  points $j$ and $i$ is called $t_{ij}$ . Clearly $t_{ij}$ will have some  fundamental dependence on the overlap of atomic contains a sum over all  processes wave functions. The Hamiltonian $H$ in which an electron hops  between sites, and so is a sum over pairs of sites: 
  $\hat{H}_{hopping}=\sum_{ij}(-t_{ij})\hat{c}_i^\dagger\hat{c}_j^\dagger$
  Ok. After reading that book, I am trying to work on the kinetic term  of the Hamiltonian for a $VO_2$ system using tight-binding  approximation, but I'm not quite sure whether my work is right or wrong. 



  Would you all be so kind as to check my work? 






In my case, $VO_2$ is modelled by taking the (110) plane from its unit  cell as shown in second figure above.  The model unit cell has two basis  oxygen atoms ($O_A$ and $O_B$), vertically located $a \approx 2.87$  angstrom apart, each of which contributing two p orbitals ($p_x$ and  $p_y$) and two vanadium atoms ($V_A$ and $V_B$), vertically located $a  \approx 2.87$ angstrom apart, each of which contributing two d orbitals  ($d_{x^2-y^2}$ and $d_{xy}$). Here, we choose 8 basis orbitals to  construct our hilbert space, which we order as follows: $\left| O_A-p_x  \right\rangle$, $\left| O_A-p_y \right\rangle$, $\left| O_B-p_x  \right\rangle$, $\left| O_B-p_y \right\rangle$, $\left| V_A-d_{x^2-y^2}  \right\rangle$, $\left| V_A-d_{xy} \right\rangle$, $\left|  V_B-d_{x^2-y^2} \right\rangle$, and $\left| V_B-d_{xy} \right\rangle$. 



Using this set of bases and tight-binding approximation, the kinetic part of the hamiltonian can be written in $k$ space as 
  $\hspace{1cm}$
  $H=H_{on-site}+H_{hopping}$
  $\hspace{1cm}$
  where
  $\hspace{1cm}$


$H_{on-site}=\sum_{\bar{k}}\left( \epsilon_{d_{A}}  d_{A_{1\bar{k}}}^{\dagger} d_{A_{1\bar{k}}} + \epsilon_{d_{A}}  d_{A_{2\bar{k}}}^{\dagger} d_{A_{2\bar{k}}} + \epsilon_{d_{B}}  d_{B_{1\bar{k}}}^{\dagger} d_{B_{1\bar{k}}}+\epsilon_{d_{B}}  d_{B_{2\bar{k}}}^{\dagger} d_{B_{2\bar{k}}}+\epsilon_{p_{A}}  p_{A_{x\bar{k}}}^{\dagger} p_{A_{x\bar{k}}}+\epsilon_{p_{A}}  p_{A_{y\bar{k}}}^{\dagger} p_{A_{y\bar{k}}}+\epsilon_{p_{B}}  p_{B_{x\bar{k}}}^{\dagger} p_{B_{x\bar{k}}}+\epsilon_{p_{B}}  p_{B_{y\bar{k}}}^{\dagger} p_{B_{y\bar{k}}}\right)$ $\hspace{1cm}$


and 



$\hspace{1cm}$


$H_{hopping}=-t_{V_A-V_B}\left(\sum_{\bar{k}}e^{-i\bar{k}\cdot a  \hat{y}}d_{A_{1\bar{k}}}^{\dagger}d_{B_{1\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot  (-a  \hat{y})}d_{A_{1\bar{k}}}^{\dagger}d_{B_{1\bar{k}}}\right)-t_{V_A-O_B}\left(\sum_{\bar{k}}e^{-i\bar{k}\cdot\left(-\frac{1}{2}c\hat{x}+\frac{1}{2}a\hat{y}\right)}d_{A_{2\bar{k}}}^{\dagger}p_{B_{1\bar{k}}}   +\sum_{\bar{k}}e^{-i\bar{k}\cdot(\frac{1}{2}c\hat{x}+\frac{1}{2}a\hat{y})}d_{A_{2\bar{k}}}^{\dagger}p_{B_{1\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(-\frac{1}{2}c\hat{x}+\frac{1}{2}a\hat{y})}d_{A_{2\bar{k}}}^{\dagger}p_{B_{1\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(\frac{1}{2}c\hat{x}+\frac{1}{2}a\hat{y})}d_{A_{2\bar{k}}}^{\dagger}p_{B_{2\bar{k}}}\right)-t_{V_A-O_A}\left(\sum_{\bar{k}}e^{-i\bar{k}\cdot\left(-\frac{1}{2}c\hat{x}-\frac{1}{2}a\hat{y}\right)}d_{A_{2\bar{k}}}^{\dagger}p_{A_{1\bar{k}}}   +\sum_{\bar{k}}e^{-i\bar{k}\cdot(\frac{1}{2}c\hat{x}-\frac{1}{2}a\hat{y})}d_{A_{2\bar{k}}}^{\dagger}p_{A_{1\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(-\frac{1}{2}c\hat{x}-\frac{1}{2}a\hat{y})}d_{A_{2\bar{k}}}^{\dagger}p_{A_{2\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(\frac{1}{2}c\hat{x}-\frac{1}{2}a\hat{y})}d_{A_{2\bar{k}}}^{\dagger}p_{A_{2\bar{k}}}\right)-t_{V_B-O_A}\left(\sum_{\bar{k}}e^{-i\bar{k}\cdot\left(-\frac{1}{2}c\hat{x}+\frac{1}{2}a\hat{y}\right)}d_{B_{2\bar{k}}}^{\dagger}p_{A_{1\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(\frac{1}{2}c\hat{x}+\frac{1}{2}a\hat{y})}d_{B_{2\bar{k}}}^{\dagger}p_{A_{1\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(-\frac{1}{2}c\hat{x}+\frac{1}{2}a\hat{y})}d_{B_{2\bar{k}}}^{\dagger}p_{A_{2\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(\frac{1}{2}c\hat{x}+\frac{1}{2}a\hat{y})}d_{B_{2\bar{k}}}^{\dagger}p_{A_{2\bar{k}}}\right)-t_{V_B-O_B}\left(\sum_{\bar{k}}e^{-i\bar{k}\cdot\left(-\frac{1}{2}c\hat{x}-\frac{1}{2}a\hat{y}\right)}d_{B_{2\bar{k}}}^{\dagger}p_{B_{1\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(\frac{1}{2}c\hat{x}-\frac{1}{2}a\hat{y})}d_{B_{2\bar{k}}}^{\dagger}p_{B_{1\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(-\frac{1}{2}c\hat{x}-\frac{1}{2}a\hat{y})}d_{B_{2\bar{k}}}^{\dagger}p_{B_{2\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot(\frac{1}{2}c\hat{x}-\frac{1}{2}a\hat{y})}d_{B_{2\bar{k}}}^{\dagger}p_{B_{2\bar{k}}}\right)-t_{O_A-O_B}\left(\sum_{\bar{k}}e^{-i\bar{k}\cdot  a  \hat{y}}p_{A_{y\bar{k}}}^{\dagger}p_{B_{y\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot  (-a  \hat{y})}p_{A_{y\bar{k}}}^{\dagger}p_{B_{y\bar{k}}}\right)-t_{O_A-O_A}\left(\sum_{\bar{k}}e^{-i\bar{k}\cdot  c  \hat{x}}p_{A_{x\bar{k}}}^{\dagger}p_{A_{x\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot  (-c  \hat{x})}p_{A_{x\bar{k}}}^{\dagger}p_{A_{x\bar{k}}}\right)-t_{O_B-O_B}\left(\sum_{\bar{k}}e^{-i\bar{k}\cdot  c  \hat{x}}p_{B_{x\bar{k}}}^{\dagger}p_{B_{x\bar{k}}}+\sum_{\bar{k}}e^{-i\bar{k}\cdot  (-c \hat{x})}p_{B_{x\bar{k}}}^{\dagger}p_{B_{x\bar{k}}}\right)$


$\hspace{1cm}$


  Thus,
  

$\hspace{1cm}$


$H =\sum_{\bar{k}}\left(\epsilon_{d_{A}}d_{A_{1\bar{k}}}^{\dagger}  d_{A_{1\bar{k}}}+\epsilon_{d_{A}}d_{A_{2\bar{k}}}^{\dagger}d_{A_{2\bar{k}}}+\epsilon_{d_{B}}d_{B_{1\bar{k}}}^{\dagger}d_{B_{1\bar{k}}}+\epsilon_{d_{B}}  d_{B_{2\bar{k}}}^{\dagger} d_{B_{2\bar{k}}}+\epsilon_{p_{A}}  p_{A_{x\bar{k}}}^{\dagger} p_{A_{x\bar{k}}}+\epsilon_{p_{A}}  p_{A_{y\bar{k}}}^{\dagger} p_{A_{y\bar{k}}}+\epsilon_{p_{B}}  p_{B_{x\bar{k}}}^{\dagger} p_{B_{x\bar{k}}}+\epsilon_{p_{B}}  p_{B_{y\bar{k}}}^{\dagger} p_{B_{y\bar{k}}}-2t_{V_{A}V_{B}}  d_{A_{1\bar{k}}}^{\dagger}d_{B_{1\bar{k}}}\cos{\left( k_{y}a  \right)}-2t_{V_AO_B}\left(d_{A_{2\bar{k}}}^{\dagger}p_{B_{x\bar{k}}}e^{-i\frac{1}{2}k_ya}\cos{\left(\frac{k_{x}c}{2}\right)}+d_{A_{2\bar{k}}}^{\dagger}p_{B_{y\bar{k}}}e^{-i\frac{1}{2}k_ya}\cos{\left(\frac{k_{x}c}{2}\right)}+h.c\right)-2t_{V_AO_A}\left(d_{A_{2\bar{k}}}^{\dagger}p_{A_{x\bar{k}}}e^{i\frac{1}{2}k_ya}\cos{\left(\frac{k_{x}c}{2}\right)}+d_{A_{2\bar{k}}}^{\dagger}p_{A_{y\bar{k}}}e^{i\frac{1}{2}k_ya}\cos{\left(\frac{k_{x}c}{2}\right)}+h.c\right)-2t_{V_BO_A}\left(d_{B_{2\bar{k}}}^{\dagger}p_{A_{x\bar{k}}}e^{-i\frac{1}{2}k_ya}\cos{\left(\frac{k_{x}c}{2}\right)}+d_{B_{2\bar{k}}}^{\dagger}p_{A_{y\bar{k}}}e^{-i\frac{1}{2}k_ya}\cos{\left(\frac{k_{x}c}{2}\right)}+h.c\right)-2t_{V_BO_B}\left(d_{B_{2\bar{k}}}^{\dagger}p_{B_{x\bar{k}}}e^{i\frac{1}{2}k_ya}\cos{\left(\frac{k_{x}c}{2}\right)}+d_{B_{2\bar{k}}}^{\dagger}p_{B_{y\bar{k}}}e^{i\frac{1}{2}k_ya}\cos{\left(\frac{k_{x}c}{2}\right)}+h.c\right)-2t_{O_{A}O_{B}}  p_{A_{y\bar{k}}}^{\dagger}p_{B_{y\bar{k}}}\cos{\left( k_{y}a  \right)}-2t_{O_{A}O_{A}}p_{A_{x\bar{k}}}^{\dagger}p_{A_{x\bar{k}}}\cos{\left(  k_{x}c  \right)}-2t_{O_{B}O_{B}}p_{B_{x\bar{k}}}^{\dagger}p_{B_{x\bar{k}}}\cos{\left(  k_{x}c \right)}\right)$


$\hspace{1cm}$


  Note: $h.c$ = hermitian conjugate
  

$\hspace{1cm}$


In equations above, $d_{A_{1\bar{k}}}^{\dagger}  (d_{A_{1\bar{k}}})$,$d_{A_{2\bar{k}}}^{\dagger} (d_{A_{2\bar{k}}})$,  $d_{B_{1\bar{k}}}^{\dagger} (d_{B_{1\bar{k}}})$,  $d_{B_{2\bar{k}}}^{\dagger} (d_{B_{2\bar{k}}})$,  $p_{A_{x\bar{k}}}^{\dagger} (p_{A_{x\bar{k}}})$,  $p_{A_{y\bar{k}}}^{\dagger} (p_{A_{y\bar{k}}})$,  $p_{B_{x\bar{k}}}^{\dagger} (p_{B_{x\bar{k}}})$, and  $p_{B_{y\bar{k}}}^{\dagger} (p_{B_{y\bar{k}}})$ create (annihilate) an  electron at $V_A$($d_{x^2-y^2}$), $V_A$($d_{xy}$), $V_B$($d_{x^2-y^2}$),  $V_B$($d_{xy}$), $O_A$($p_x$), $O_A$($p_y$), $O_B$($p_x$), and  $O_B$($p_y$) orbitals, respectively, with momentum $\bar{k}$.  $\epsilon_{d_A}$, $\epsilon_{d_B}$, $\epsilon_{p_A}$, and  $\epsilon_{p_B}$  indicate on-site energy of $V_A$, $V_B$, $O_A$, and  $O_B$, respectively. Furthermore, $t_{V_AV_B}$, $t_{V_AO_B}$,  $t_{V_AO_A}$, $t_{V_BO_A}$, $t_{V_BO_B}$, $t_{O_AO_B}$, $t_{O_AO_A}$,  and $t_{O_BO_B}$ being hopping parameter of $V_A$-$V_B$, $V_A$-$O_B$,  $V_A$-$O_A$, $V_B$-$O_A$, $V_B$-$O_B$, $O_A$-$O_B$, $O_A$-$O_A$, and  $O_B$-$O_B$ respectively. Then, a and c being the lattice constant.
Attached Thumbnails
The tight-binding hamiltonian for a two-dimensional vanadium dioxide-hopping.jpg   The tight-binding hamiltonian for a two-dimensional vanadium dioxide-picture.jpg  

Last edited by gerryliyana; Apr 12th 2015 at 11:52 AM.
gerryliyana is offline   Reply With Quote
Reply

  Physics Help Forum > College/University Physics Help > Atomic and Solid State Physics

Tags
dioxide, hamiltonian, tight binding model, tightbinding, twodimensional, vanadium



Thread Tools
Display Modes


Similar Physics Forum Discussions
Thread Thread Starter Forum Replies Last Post
Stoichiometry Ratio and Tight-binding Model gerryliyana Atomic and Solid State Physics 0 Dec 22nd 2014 11:24 PM
Hamiltonian suyoon Advanced Mechanics 1 Apr 19th 2010 05:35 AM
Tight binding approximation, Brillouin zone, Fermi ,... Plasmon Atomic and Solid State Physics 2 Jun 6th 2009 09:16 AM
How much energy can carbon dioxide emit? williampinn Thermodynamics and Fluid Mechanics 3 Apr 25th 2009 07:53 AM
tight binding model problem disclaimer Atomic and Solid State Physics 8 Sep 23rd 2008 04:35 AM


Facebook Twitter Google+ RSS Feed