Go Back   Physics Help Forum > College/University Physics Help > Advanced Mechanics

Advanced Mechanics Advanced Mechanics Physics Help Forum

LinkBack Thread Tools Display Modes
Old Mar 3rd 2010, 03:47 PM   #1
Junior Member
Join Date: Dec 2009
Posts: 5
Question Pendulum

Rather than solve the double pendulum problem with two masses in the usual way.

Instead express the coordinates of the second mass, in terms of the coordinates of the mass above it.

$ x2=x_1+\xi = L_1Sin[\theta]Cos[\phi]+L_2Sin[\alpha]Cos[\beta]$\\
$ y2=y_1+ \eta = L_1Sin[\theta]Sin[\phi]+L_2Sin[\alpha]Sin[\beta]$\\
$ z2=z_1-\xi = L_1-L_1Cos[\theta]-L_2Sin[\alpha]Cos[\beta]$

Wouldn't you suspect that the Lagrangian remain invariant? Is there a way to reparameterize these equations?
Attached Thumbnails
Nusc is offline   Reply With Quote

  Physics Help Forum > College/University Physics Help > Advanced Mechanics


Thread Tools
Display Modes

Similar Physics Forum Discussions
Thread Thread Starter Forum Replies Last Post
Pendulum and Pin issue MickMartin Energy and Work 4 Nov 16th 2012 11:59 AM
Pendulum In a Car teddybear9 Kinematics and Dynamics 4 Oct 30th 2011 08:42 AM
focault pendulum swaha Advanced Mechanics 9 Dec 19th 2009 02:37 AM
Velocity of Pendulum strgrl Advanced Mechanics 3 May 3rd 2009 03:02 PM
Pendulum asi123 Advanced Mechanics 4 Oct 19th 2008 01:04 PM

Facebook Twitter Google+ RSS Feed